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Abstract

We propose a novel algorithm called Evolutionary Policy Iteration �EPI� for solving in�nite

horizon discounted reward Markov Decision Process �MDP� problems� EPI inherits the spirit of

the well�known PI algorithm but eliminates the need to maximize over the entire action space in

the policy improvement step� so it should be most e�ective for problems with very large action

spaces� EPI iteratively generates a �population� or a set of policies such that the performance

of the �elite policy� for a population is monotonically improved with respect to a de�ned �tness

function� EPI converges with probability one to a population whose elite policy is an optimal

policy for a given MDP� EPI is naturally parallelizable and along this discussion� a distributed

variant of PI is also studied�
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Evolutionary Policy Iteration �

� Introduction

We propose a novel algorithm called Evolutionary Policy Iteration �EPI� to solve Markov Decision

Processes �MDPs� for an in�nite horizon discounted reward criterion� The algorithm is especially

targeted to problems where the state space is relatively small but the action space is extremely large�

so that the policy improvement step in Policy Iteration �PI� becomes computationally impractical�

EPI eliminates the operation of maximization over the entire action space in the policy improvement

step by directly manipulating policies via a method called �policy switching	 
�� that generates

an improved policy from a set of given policies� The computation time for generating such an

improved policy is on the order of the state space size� The basic algorithmic procedure imitates

that of standard genetic algorithm �GAs� �see� e�g�� 
�� 
�
� 
��� with appropriate modi�cations

and extensions required for the MDP setting� based on an idea similar to the �elitism	 concepts

introduced by De Jong 
��� In our setting� the elite policy for a population is a policy obtained via

policy switching that improves the performances of all policies in the population� EPI starts with

a set of policies or �population	 and converges with probability one �w�p� �� to a population of

which the elite policy is an optimal policy� while maintaining a certain monotonicity property for

elite policies over generations with respect to a �tness value�

The literature applying evolutionary algorithms such as GAs for solving MDPs is relatively

sparse� The recent work of Lin� Bean� and White 
�� uses a GA approach to construct the minimal

set of a�ne functions that describes the value function in partially observable MDPs� yielding a

variant of value iteration� Chin and Jafari 
�� propose an approach that maps heuristically �simple	

GA 
�
� into the framework of PI� However� their evolutionary operations do not include policy

switching� and convergence to an optimal policy is not always guaranteed�

As noted earlier� the main motivation for the proposed EPI algorithm is the setting where

the action state space is �nite but extremely large� In this case� it could be computationally

impractical to apply exact PI or value iteration� due to the requirements of maximization over the

entire action space via e�g�� enumeration or random search methods� On the other hand� local

search cannot guarantee that a global maximum has been found� Thus� the monotonicity in the

policy improvement step is not preserved� The proposed EPI algorithm preserves an analogous

monotonicity property over the elite policies in the populations�

A primary contribution of our work is the use of a �random� evolutionary search algorithm in the

context of MDPs with a convergence guarantee �w�p� ��� Another contribution is the development

of a parallelizable algorithm for solving MDP problems exactly via policy switching� We partition

the policy space with nonoverlapping subsets of the policy space and then apply EPI or PI into

each subset in parallel� Distributed EPI applies policy switching to �convergent� elite policies for

the subsets� obtaining an optimal policy for the original policy space �see Section ���

This note is organized as follows� We start with the problem setting and necessary background
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on MDPs in Section �� In Section �� we formally describe the EPI algorithm with detailed discussion

and present the convergence proof� In Section �� we study a distributed variant of PI and discuss

how to speed up EPI by parallelization� We then conclude with some remarks in Section ��

� Background

Consider an MDP with �nite state space X� �nite action space A� reward function R � X�A�R�

and transition function P that maps a state and action pair to a probability distribution over X�

We denote the probability of transitioning to state y � X when taking action a in state x � X by

P �x� a��y�� For simplicity� we assume that every action is admissible in every state�

Let � be the set of all stationary policies � � X � A� De�ne the optimal value associated with

an initial state x � X�

V ��x� � max
���

V ��x�� x � X� where

V ��x� � E

�
�X
t��

�tR�xt� ��xt��

����x� � x

�
� x � X� 
 � � � �� � � ��

where xt is a random variable denoting state at time t and � is the discount factor� Throughout

the paper� we assume that � is �xed� The problem we address is that of �nding an optimal

policy �� that maximizes the expected optimal value for an initial state distributed with probability

distribution �� i�e��

�� � argmax
���

E 
V ��X��� � X� � �� ���

Policy iteration �PI� can be used to solve ���� For a given initial state� PI computes an optimal

policy in a �nite number of steps� because there are a �nite number of policies in �� and PI

preserves the monotonicity in terms of the policy performance� The PI algorithm consists of two

parts� policy evaluation and policy improvement� Let B�X� be the space of real�valued bounded

measurable functions on X� We de�ne an operator T � B�X�� B�X� as

T ����x� � max
a�A

��
�R�x� a� � �

X
y�X

P �x� a��y���y�

��
� �� � B�X�� x � X� ���

and similarly� an operator T� � B�X�� B�X� for � � � as

T�����x� � R�x� ��x�� � �
X
y�X

P �x� ��x���y���y��� � B�X�� x � X� ���

It is well known �see� e�g�� 
��� that for each policy � � �� there exists a corresponding unique

� � B�X� such that for x � X�

T�����x� � ��x� and ��x� � V ��x��
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The policy evaluation step obtains V � for a given � via ���� and the policy improvement step

obtains �� � �� e�g�� as the argument of the right�hand side of ���� such that

T �V ���x� � T���V
���x�� x � X�

The policy �� improves � in that V ���x� � V ��x� �x � X� However� carrying out the policy

improvement step may be impractical for large A� motivating our EPI algorithm as an alternative�

� Evolutionary Policy Iteration

��� Algorithm description

As with all evolutionary�GA algorithms� we de�ne the kth generation population �k � 
� �� �� �����

denoted by P �k�� which is a set of policies in �� and n � jP �k�j � � is the population size� which

we take to be constant in each generation� Given the �xed initial state probability distribution �

de�ned over X� we de�ne the average value of � for � or �tness value of ��

J�� �
X
x�X

V ��x���x��

Note that J�� is simply the expectation given by the function on the right�hand side of ���� and an

optimal policy �� satis�es

J�
�

� � J�� �� � ��

A high�level description of the EPI algorithm is shown in Figure �� where some steps �e�g�� mutation�

are described at a conceptual level� with details provided in the following subsections� We denote

Pm as the mutation selection probability� Pg the global mutation probability� and Pl the local

mutation probability� We also de�ne an action selection distribution � as a probability distribution

over A such that
P

a�A ��a� � � and ��a� � 
 for all a � A�

��� Initialization and Policy Selection

Convergence of the EPI algorithm is independent of the initial population P �
� �to be shown later��

mainly due to the Policy Mutation step� We can randomly generate an initial population or start

with a set of heuristic policies� One simple initialization is a population of policies with the property

that the same action is prescribed for every state� but each policy in the population prescribes a

di�erent action�

��� Policy Switching

One of the basic procedural steps in GA is to select members from the current population to create

a �mating pool	 to which �crossover	 is applied� this step is called �parent selection	� Similarly�
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Evolutionary Policy Iteration �EPI�

� Initialization�

Select population size n and K � �� P ��� � f��� ���� �ng� where �i � ��

Set N � k � �� and Pm� Pg and Pl in ��� ��� and ������ � ���

� Repeat�

� Policy Switching�

� Obtain V � for each � � P �k��

� Generate the elite policy of P �k� de�ned as

�
��k��x� � fargmax

��P �k�

�V ��x���x�g� x � X�

� Stopping Rule�

� If J
���k�
� �� J

���k���
� � N � ��

� If J
���k�
� � J

���k���
� and N � K� terminate EPI�

� If J
���k�
� � J

���k���
� and N � K� N � N � ��

� Generate n� � random subsets Si� i � �� ���� n� � of P �k�

by selecting m � f
� ���� n � �g with equal probability and selecting m

policies in P �k� with equal probability�

� Generate n� � policies ��Si� de�ned as�

��Si��x� � fargmax
��Si

�V ��x���x�g� x � X�

� Policy Mutation� For each policy ��Si�� i � �� ���� n� ��

� Generate a �globally� mutated policy �m�Si� w�p� Pm using Pg and � or

a �locally� mutated policy �m�Si� w�p� �� Pm using Pl and ��

� Population Generation�

� P �k � �� � f���k�� �m�Si�g� i � �� ���� n � ��

� k � k � ��

Figure �� Evolutionary Policy Iteration �EPI�

we can design a �policy selection	 step to create a mating pool� there are many ways of doing this�

The Policy Switching step includes this selection step implicitly�

Given a nonempty subset � of �� we de�ne a policy �� generated by policy switching with

respect to � as

���x� � fargmax
���

�V ��x���x�g� x � X� ���

For completeness� we show that the policy generated by policy switching improves any policy in �

�see also Theorem � in 
����

Theorem ��� Consider a nonempty subset � of � and the policy �� generated by policy switching
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with respect to � given in Equation ���� Then� for all x � X�

V ���x� � max
���

V ��x��

Proof� We begin with a lemma� which states a basic property of the T��operator de�ned by ����

Lemma ��� Given � � �� suppose there exists � � B�X� for which

T�����x� � ��x�� x � X� ���

Then� V ��x� � ��x� for all x � X�

Proof� By successive applications of the T��operator to both sides of Equation ��� and the mono�

tonicity property of the operator� we have that for all x � X�

lim
n��

T n
� ����x� � ��x��

And by the Banach �xed point theorem� limn�� T n
� ����x� � V ��x�� x � X� which proves the

lemma�

Now de�ne ��x� � max��� V
��x� for all x � X� Pick an arbitrary state x � X� From the

de�nition� there exists a policy �� � � such that V ���x� � V ��x� for all � � � and ���x� � ���x��

It follows that

T������x� � R�x� ���x�� � �
X
y�X

P �x� ���x���y���y�

� R�x� ���x�� � �
X
y�X

P �x� ���x���y���y�

� R�x� ���x�� � �
X
y�X

P �x� ���x���y�V ���y�

� V ���x� � ��x��

By the lemma above� the claim is proved�

The above theorem immediately implies the following result�

Corollary ��� Consider a nonempty subset � of � and the policy �� generated by policy switching

with respect to � given in Equation ���� Then� for any initial state distribution ��

J ��� � max
���

J�� �

Proof� From the de�nition of J�� for � � ��

J ��� �
X
x�X

V ���x���x� �
X
x�X

max
���

V ��x���x� � max
���

X
x�X

V ��x���x� � max
���

J�� �

where the last inequality follows from Jensen�s inequality�



Evolutionary Policy Iteration  

We �rst generate a policy ���k�� called the elite policy with respect to the current population

P �k�� which improves any policy in P �k� via policy switching� Note that this is di�erent from

the elitist concept of De Jong 
��� where the elitist is the best policy in P �k�� EPI includes the

elite policy generated by policy switching unmutated in the the new population� By doing so� the

population contains a policy that improves any policy in the previous population� Therefore� the

following monotonicity property holds�

Lemma ��� For any � and for all k � 
�

J
���k�
� � J

���k���
� �

Proof� The proof is by induction� The base step is obvious from the de�nition of ���
� and ������

by Corollary ���� Assume that J
���i�
� � J

���i���
� for all i � k� Because the EPI algorithm includes

���k� in P �k���� the elite policy at k�� is generated over a population that contains ���k�� which

implies that J
���k	��
� � J

���k�
� �

We then generate n � � random subsets Si� i � �� ���� n � � of P �k� as follows� We �rst select

m � f�� ���� n��g with equal probability and then selectm policies from P �k� with equal probability�

By applying policy switching� we generate n� � policies de�ned as

��Si��x� � fargmax
��Si

�V ��x���x�g� x � X�

These policies will be mutated to generate a new population �see the next subsection��

The policy switching step is a key part in EPI to speed up the convergence of EPI� Suppose

that Si for some i consists of two policies �� and �
 and let ! � fxj���x� �� �
�x�� x � Xg� Write

� � �� if for all x � X�

V ��x� � V ���x�

and for some state x � X�

V ��x� � V ���x�

and write � � �� if for all x � X� V ��x� � V ���x�� Then there are at least j!j policies ��j �

j � �� ���� j!j such that for each j� either

��Si� � ��j � �� or ��Si� � ��j � �


holds� In other words� by one application of policy switching� we eliminate at least j!j policies but

at most jXj in the search process� This is because given a policy �� if we can improve the policy �

by modifying the actions in m states� we rule out at least m policies that are better than �� See

Lemma � 
 � for a formal proof�

As we can see� policy switching directly manipulates policies to generate an improved policy

relative to all policies it was applied to� eliminating the operation of maximization over the entire

action space� which is the main computational advantage that replaces the policy improvement

step in the original PI�
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��� Policy Mutation

Policy mutation is carried out by altering a given policy in the following manner� for each state� the

currently prescribed action is replaced probabilistically� The main reason for mutating policies is

to avoid being caught in a local maximum� making a probabilistic convergence guarantee possible

�see the convergence proof below�� We consider two types of mutation� �local	 and �global	� which

are distinguished by the degree of mutation� as indicated by the number of states with changed

actions in the mutated policy� To this end� we assume that Pl 	 Pg� with Pl being close to zero

and Pg being close to one� The Policy Mutation step �rst determines whether a given policy

� is mutated globally or locally� using Bernoulli probability Pm� If � is globally �resp�� locally�

mutated� then for each state x� ��x� is changed w�p� Pg �resp�� Pl�� where the action to which it is

changed would follow the given action selection distribution �� Local mutation helps the algorithm

�ne�tune good policies via local search� whereas global mutation helps the algorithm escape from

local maximum� One simply way to select the particular action to which the current action is

mutated is to select randomly �uniformly� among all other actions�

��� Population Generation and Stopping Rule

At each kth generation� the new population P �k � �� is simply given by the elite policy generated

from P �k� and n � � mutated policies from ��Si�� i � �� ���� n � �� This population generation

method allows a policy that is poor in terms of performance� but might be in the neighborhood of

an optimal value located at the top of the very narrow hill� to be kept in the population so that a

new search region can be started from the policy� This helps the algorithm to avoid being caught

in the region of local optima�

Once we have a new population� we need to test whether EPI should terminate� Even if the

�tness values for the two consecutive elite policies are identical� this does not necessarily mean that

the elite policy is an optimal policy as in PI� Therefore� we run the EPI algorithm K more times so

that these random jumps by the mutation step will eventually bring EPI to a neighborhood of the

optimum� As the value of K gets larger� the probability of being in a neighborhood of the optimum

increases� Therefore� the elite policy at the termination is the right policy with more con�dence as

K increases�

��� Convergence

Theorem ��� Given Pm � 
� Pg � 
� Pl � 
� and an action selection distribution � such thatP
a�A ��a� � � and ��a� � 
 �a � A� ���k� �� �� w�p� � as K �
 for any P �
��

Proof� The proof is straightforward� Observe �rst that as K �
� k �
� This is because EPI

terminates when N � K and if N �� K� the value of k increases by one�
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From the assumption� the probability of generating an optimal policy by the Policy Mutation

step is positive� To see this� let � be the probability of generating one of the optimal policies by local

mutation and let 	 the probability of generating one of the optimal policies by global mutation�

Then�

� �
Y
x�X

Pl���
��x�� � �Pl�

jXj �
Y
x�X

�����x�� � 


	 �
Y
x�X

Pg���
��x�� � �Pg�

jXj �
Y
x�X

�����x�� � 
� ���

where �� is a particular optimal policy in �� Therefore� the probability of generating an optimal

policy by the Policy Mutation step is positive and this probability is independent of P �
��

Therefore� the probability that P �k� does not contain an optimal policy �starting from an

arbitrary P �
�� is at most ������Pm���n���k����	����Pm���n���k� which goes to zero as k �
�

By Lemma ���� once P �k� contains an optimal policy� P �k�m� contains an optimal policy for any

m � � because the �tness value of an optimal policy is the maximum among all policies in �� This

proves the claim�

� Parallelization

The EPI algorithm can be naturally parallelized and by doing so� we can improve the running rate�

Basically� we partition the policy space � into subsets of f�ig such that
S
i�i � � and �i��j � 


for all i �� j� We then apply EPI to each �i in parallel� and then once each part terminates� the

best policy ��i from each part is taken� We then apply policy switching to the set of best policies

f��i g� We state a general result regarding parallelization of any algorithm that �nds optimal polices

for MDPs�

Theorem ��� Given a partition of � such that
S
i�i � � and �i ��j � 
 for all i �� j� consider

an algorithm A that generates the best policy ��i for �i such that for all x � X�

V ��i �x� � max
���i

V ��x��

Then� the policy �� de�ned as

���x� � fargmax
��i

�V ��i �x���x�g� x � X�

is an optimal policy for ��

Proof� Via policy switching� �� improves the performance of each ��i � i�e��

V ���x� � max
��i

V ��i �x�� x � X�

implying that �� is an optimal policy for �� since the partition covers the entire policy space�
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Note that we cannot just pick the best policy among ��i in terms of the �tness value J�� � The

condition that J�� � J�
�

� for � �� �� does not always imply that V ��x� � V ���x� for all x � X even

though the converse is true� In other words� we need a policy that improves all policies ��i � Picking

the best policy among such policies does not necessarily guarantee an optimal policy for ��

If the number of subsets in the partition is N � the overall convergence of the algorithm A is

faster by a factor of N � For example� if at state x� the action a or b can be taken� let �� �

f�j��x� � a� � � �g and �
 � f�j��x� � b� � � �g� By using this partition� the convergence rate

of the algorithm A will be twice as fast�

By Theorem ���� this idea can be applied to PI via policy switching� yielding a �distributed	

PI� We apply PI to each �i� Once PI for each part terminates� we combine the resulting policy for

each part by policy switching� The combined policy is an optimal policy so that this method will

speed up the original PI by a factor of N if the number of subsets in the partition is N � However�

note that this distributed variant of PI will also involve the operation of the maximization over the

action space in the policy improvement step� The result of Theorem ��� also naturally extends to

a dynamic programming version of PI� similarly to EPI� For example� we can partition � by ��

and �
� and �� is subdivided by ��� and ��
� and �
 by �
� and �

� The optimal substructure

property is preserved by policy switching� Suppose that the number of subsets generated in this

way is 	� then the overall computation time of an optimal policy is O�	 � jXj � C�� where C is the

maximum size of the subsets in terms of the number of policies� because policy switching is applied

O�	� times with O�jXj� complexity and C is the upper bound on PI�complexity�

� Concluding Remarks

The discussion in the previous section raises an important question that can motivate further

research� How can we partition the policy space so that PI or EPI converges faster" For well�

chosen partitions� we may even be able to obtain optimal policies for some subsets analytically�

Much of the MDP literature concentrates on aggregation in the state space �see� e�g�� 
��� for an

approximate solution for a given MDP� Our discussion on the parallelization of PI and EPI can be

viewed in some sense as an aggregation in the policy space� where the distributed version of EPI

can be used to generate an approximate solution of a given MDP�

In our setting� the mutated action for a mutated state was determined �probabilistically� by a

given action selection distribution� If the action space is continuous� say 

� ��� a straightforward

implementation might change only the least signi�cant digit for local mutation and the most sig�

ni�cant digit for global mutation� where numbers in 

� �� are represented by a certain number of

signi�cant digits�

GAs are known to work well for many continuous domain problems but to face di�culties of

a di�erent kind for problems where the decision variables are discrete 
��� However� EPI circum�



Evolutionary Policy Iteration ��

vents this problem via policy switching� an idea that has not been exploited in the GA literature

previously�
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